
Entanglement entropy with localized and extended interface defects

Ferenc Iglói
Research Institute for Solid State Physics and Optics, P.O. Box 49, H-1525 Budapest, Hungary

and Institute of Theoretical Physics, Szeged University, H-6720 Szeged, Hungary

Zsolt Szatmári
Institute of Theoretical Physics, Szeged University, H-6720 Szeged, Hungary

Yu-Cheng Lin
Theoretische Physik, Universität des Saarlandes, D-66041 Saarbrücken, Germany

�Received 25 March 2009; revised manuscript received 12 June 2009; published 6 July 2009�

The quantum Ising chain of length, L, which is separated into two parts by localized or extended defects is
considered at the critical point where scaling of the interface magnetization is nonuniversal. We measure the
entanglement entropy between the two halves of the system in equilibrium, as well as after a quench, when the
interaction at the interface is changed for time t�0. For the localized defect the increase in the entropy with
log L or with log t involves the same effective central charge, which is a continuous function of the strength of
the defect. On the contrary for the extended defect the equilibrium entropy is saturated but the nonequilibrium
entropy has a logarithmic time dependence the prefactor of which depends on the strength of the defect.
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I. INTRODUCTION

Entanglement, quantum nonlocality, and quantum correla-
tions have become the subject of intensive research recently
in different fields of physics:1 quantum-information theory,
condensed-matter physics, quantum field theory, etc. For a
quantum system which is divided into two parts, A and B, all
information about entanglement is encoded in the reduced
density matrix: �A=TrB������, where ��� is a pure state of
the complete system. The entanglement between A and B is
conveniently measured by the von Neumann entropy SA=
−TrA��A log �A�, which has been intensively studied in
many-body systems, in particular, in one dimension �1D�.
For a critical 1D system �with periodic boundary conditions�
the entropy is found to grow logarithmically with the length,
L,

SA =
c

3
log L + c1, �1�

where L is the size of A or the size of the complete system,
provided it is divided into two equal parts.2–4 For confor-
mally invariant systems the parameter in the prefactor, c, is
universal and given by the central charge of the conformal
algebra. In the vicinity of the critical point where the corre-
lation length is ��L but ��1, the entropy is saturated and
given by

SA �
c

3
log � . �2�

One is also interested in the time evolution of the entropy5

after changing the form of the interaction �quantum quench�
at time t=0. In the case of a local quench6 the interaction
parameters are modified in a restricted region. For example,
measuring the entropy between A and B which are discon-
nected for t�0 but are joined to a closed chain with homo-

geneous couplings for t�0 at the critical point we observe a
logarithmic increase in time, t�L, as7,8

SA = 2
c

3
log t + cst. �3�

If the complete system is open, i.e., there is one boundary
point between A and B the prefactors in Eqs. �1�–�3� are
divided by a factor 2.

Inhomogeneous interactions could modify the entangle-
ment properties of quantum spin chains. It has been shown
that for random9–16 and aperiodic17 couplings the prefactor in
Eq. �1� is changed and involves the so-called effective cen-
tral charge, ceff. On the other hand if the couplings vary
linearly with the position an interface with a certain width is
introduced and in the expression of the entropy in Eq. �2�, �
is replaced by this length.18

If the inhomogeneities are centered at a few points �“de-
fects”� they are not expected to modify the scaling form of
the entropy unless the defects are located at the interface.
Indeed interface defects can modify the scaling form of the
wave function in the vicinity of the junction,19 which in turn
alter the entanglement entropy. The effect of a local interface
defect, 	, which measures the coupling between A and B
has been investigated for XXZ and XX quantum spin
chains.20–22 For the antiferromagnetic XXZ chain the defect
is a �marginally� relevant perturbation,23 the defect renormal-
izes to a cut and the effective central charge approaches
zero.20 On the contrary for the ferromagnetic XXZ chain the
defect is a �marginally� irrelevant perturbation, the defect
renormalizes to the homogeneous coupling, and the effective
central charge approaches one. Finally, in the XX chain the
defect is a marginal perturbation and the effective central
charge in Eq. �1� is found21 to depend on the strength of the
defect, 	.
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In the present paper we study the effect of interface de-
fects on the entanglement properties of critical quantum spin
chains. Our approach differs from the previous ones in sev-
eral respects. The system we consider is the quantum Ising
chain and we study the problem with a localized as well as
with an extended defect. The latter is realized by a smooth
inhomogeneity in the couplings varying as �A /x, x being
the distance from the interface.24,25 Both perturbations are
known to be marginal as far as the scaling behavior of the
interface magnetization at the critical point is considered. We
study the entropy both in equilibrium, as well as after a
quench, when the interface couplings are modified for t�0.
The main goal of our investigations is to study possible re-
lations �i� between local critical scaling and the scaling of the
entropy, and �ii� between scaling form of equilibrium and
nonequilibrium entropies like in Eqs. �1� and �3�.

The structure of the paper is the following. The model, the
type of defects, the interface critical behavior as well as the
way of calculation of the entropy are described in Sec. II.
The localized and the extended defect problems are studied
in Secs. III and IV, respectively. Our results are discussed in
the final section. Some technical details of the calculations
are put in Appendixes A and B.

II. MODELS AND METHOD

We consider the quantum Ising chain defined by the
Hamiltonian,

H0 = − �
i=1

L


i
x
i+1

x − h�
i=1

L


i
z �4�

in terms of the Pauli matrices, 
i
x,z, at site i and with periodic

boundary conditions, 
L+1
x =
1

x. The quantum critical point of
the system is given by26 h=hc=1, where the bulk correlation
function has a power-law decay for large L,

G�L� = �0�
L/4
x 
3L/4

x �0� � L−�, �5�

with �=�0=1 /4.

A. Localized defect

A localized defect is defined by the perturbation,

Vloc = �1 − 	��
L/2
x 
L/2+1

x + 
L
x
L+1

x � �6�

so that the complete Hamiltonian is given by H0+Vloc. This
perturbation does not modify the decay of the bulk correla-
tions in Eq. �5�; however the interface or defect correlations,

Gd�L� = �0�
1
x
L/2

x �0� � L−�d, �7�

involve a new exponent,27,28

�d = �loc�	� =
4

�2arctan2�1/	� , �8�

which is a continuous function of the strength of the defect,
	. Note that in the special cases, 	=0 and 	=1, we recover
the known results for surface and bulk correlations, respec-
tively.

More generally, one can consider the defect at position L
of different strength, say 	�. For 	�=1 and for 	�=0 there is
one defect in the closed or open chain, respectively. The
defect exponent is then modified to ��d+1 /4� /2 and ��d
+1� /2, respectively.19

B. Extended defect

The extended defect is defined by a smooth
inhomogeneity,25

Vext = − �
i=1

L

i
i
x
i+1

x , i =
A/2

L
2�

�sin	 2��i−��
L 
� �9�

and this perturbation is put symmetrically in the two parts of
the lattice. In Eq. �9� we have used a shift, �=O�1�, in order
to avoid singularities.

The local critical behavior of this system is different for
A�0 and for A�0. For weakened local couplings, A�0,
correlations between two defect spins, Gd�L�, has an alge-
braic decay with an A-dependent defect exponent: �ext�A�
=1−A. At the same time correlations between two bulk
spins, G�L�, involves an exponent � which also depends on
A: �=1 /4−A. This unexpected variation in the exponent
with A is due to the fact that the interface coupling at i=0 �as
well as at i=L /2� renormalizes to zero as J0�L��LA. This
fact explains also the observation that the decay exponent of
the end-to-end correlations for two decoupled chains is just
�ext�A�, at least for A�0.

For enhanced local couplings, A�0, the defect-defect
correlations, Gd�L�, approach a finite limiting value, md

2, so
that the interface stays ordered at the bulk critical point. The
connected correlation function, Gd�L�−md

2, decays to zero
algebraically with an exponent �ext� �A�=2A. In this case cor-
relations between bulk spins, G�L�, involves the pure expo-
nent, �0=1 /4.

C. Calculation of the entropy

Calculation of the entropy of the quantum Ising chain in
the equilibrium case is described in detail in several
papers.3,16,30 The nonequilibrium entropy in the homoge-
neous case and in the thermodynamic limit is calculated in
Ref. 5, whereas for inhomogeneous couplings and/or trans-
verse fields the method is described in Appendix A. Here we
briefly recapitulate the main steps of the calculation and de-
scribe the technical steps needed in the numerical calcula-
tion.

The first step is to transform the Hamiltonian of the quan-
tum Ising chain in terms of free fermions.29 Numerically, this
step necessitates the diagonalization of an L�L symmetric
matrix. In the second step we calculate the reduced density
matrix, which can be reconstructed from the correlation ma-
trix in the free-fermionic basis.30 The entanglement entropy
is calculated then from the eigenvalues of the reduced corre-
lation matrix. If A has � sites �in our case we use �=L /2�
this second step requires the diagonalization of a ��� sym-
metric matrix, if one works with Dirac fermions16 or a 2�
�2� skew-symmetric matrix if the calculation is performed
with Majorana fermions.3 At this step we have calculated the
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so-called single-copy entanglement31 too, which is defined
through the largest eigenvalue of the density matrix, w1, as
S1=−log w1. S1 is obtained also from the eigenvalues of the
correlation matrix. For homogeneous chains S1�L� is known
to have a logarithmic size dependence,

S1 =
�

3
log L + cst, �10�

with a prefactor, �=c /2.
In the third step of the calculation we consider the time

evolution of the entropy after a quench. For this we should
calculate the time evolution of the correlation matrix,32

which can be done in the Majorana fermion basis. Each ma-
trix elements is obtained through L2 operations, which will
result in the increase in the computational time accordingly.

If the entropy has a logarithmic dependence, either as a
function of the size 	see Eq. �1�
 or the time 	see Eq. �3�
,
then we have calculated the prefactors through two-point fit
and in this way effective central charges are obtained as

ceff�L� = 3	S�2L� − S�L�
/log 2. �11�

Similarly in the nonequilibrium case we calculated the pref-
actors as

p�L� = 	S�2L,t = L/2� − S�L,t = L/4�
/log 2. �12�

From this series of results an estimate of ceff or p is obtained
by sequence extrapolation methods, such as by the Bulirsch-
Stoer algorithm.33 In the numerical calculation we used finite
systems up to L=1024 for the equilibrium entropy and up to
L=512 for the nonequilibrium entropy.

III. CHAIN WITH LOCALIZED DEFECTS

Having two symmetrically placed defects of strength 	 in
the quantum Ising chain, as given by the Hamiltonian H0
+Vext in Eqs. �4� and �6� we have calculated the entangle-
ment entropy between two halves of the system for different

lengths, L. The results are shown in Fig. 1 as a function of
log L.

For large L the curves approach straight lines with differ-
ent 	-dependent slopes. We have calculated effective central
charges by two-point fits, see Eq. �11�, and their extrapolated
values are put in Fig. 2.

These are continuous function of the strength of the defect
and vary from 0 to 1/2 as 	 tuned from 0 to 1. The numerical
data are consistent with the relation, ceff�	�=ceff�1 /	�,
which symmetry holds also for the local magnetization ex-
ponent in Eq. �8�. To illustrate this relation we present the
numerical estimates for ceff�	=0.5�=0.3566�2� and ceff�	
=2.0�=0.3565�2�, which indeed agree within the error of the
calculation. For small 	 we have calculated S�L� perturba-
tively, the calculation is presented in Appendix B. We have
obtained that in leading order of 	2, S�L� has a logarithmic L
dependence and the effective central charge is given by

ceff�	� = 6	2� 1

�2 �1 − ln	2� + b� + O�	4� . �13�

Here b=0.062180�2� is a numerically calculated constant.
The perturbative result in Eq. �13� is also shown in Fig. 2
together with the numerical data. It is interesting to note that
in Eq. �13� there is a logarithmic correction to the leading 	2

behavior.
We have also calculated the single-copy entanglement, S1,

which is found to be in the form of Eq. �10�, however with
	-dependent prefactors, �eff�	�, the extrapolated values of
which are plotted in Fig. 2, too. In the range 0�	�1,
�eff�	� is seen to vary between 0 and 1/4 and in the small 	
limit we have �see Appendix B�

�eff�	� =
6	2

�2 + O�	4� . �14�

The ratio �eff�	� /ceff�	� varies between 0 and 1/2, thus the
conformal result, � /c=1 /2 is valid only in the homogeneous
system.

0.0

1.0

2.0

16.0 64.0 256.0 1024.0

S
(L

)

L

∆=2.0
∆=1.0
∆=0.5
∆=0.2

0.0

0.5

1.0
32.0 512.0

S
1(

L)

L

0.0

0.5

1.0
32.0 512.0

S
1(

L)

L

FIG. 1. �Color online� Entanglement entropy of the quantum
Ising chain with different strength of the defect as a function of the
logarithm of the length. The calculated values at discrete L’s are
denoted by symbols, the lines connecting these points are guide to
the eye. Inset: the same for the single-copy entanglement.
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FIG. 2. �Color online� Effective central charge, ceff�	� �full line
green�, and the parameter, �eff�	� �broken line red�, of the single-
copy entanglement of the quantum Ising chain as a function of the
strength of the localized defect, 	. For small 	 the leading behav-
iors obtained by perturbational calculation are indicated by dotted
lines.
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Our results can be generalized if there is one defect in the
system. For the closed chain �with 	�=1� the effective cen-
tral charge is changed to 	ceff�	�+1 /2
 /2, whereas for an
open chain �with 	�=0� the prefactor of the logarithm is just
the half as for two defects.

Time evolution after the quench

Here we calculate the time evolution of the entropy by
starting with two disconnected parts, i.e., with 	=0 �and
	�=0� for t�0, and connecting them by one or two defects
with 	�0 for t�0. In a finite chain of length L the entropy
has a periodic time dependence, the period of which is L /2,
if the final chain is closed �	�=	 or 	�=1� and the period is
L, if the final chain is open �	�=0�. This is illustrated in Fig.
3 for a chain with L=128 sites and with different type of
defects.

If we perform the quench to the homogeneous chain, the
numerical data are very well fitted by the formula,

SL
cl�t� = 2

c

3
log L

2�
sin

2�t

L
 + cst, �15�

for a closed chain and

SL
op�t� =

c

3
log L

�
sin

�t

L
 + cst, �16�

for an open chain with c=1 /2, which are also shown in Fig.
3.

In the general case, when the closed chain for t�0 con-
tains one or two defects of strengths 0�	�1, the numerical
results in Fig. 3 are compatible with the scaling form �for
closed chains�,

SL
cl�t� = 2

ceff

3
log�Lfcl� t

L
�� + cst, �17�

where the scaling function, fcl�y��0, is periodic with period
1/2 and for small argument it behaves as fcl�y��y. For an

open chain with one defect the prefactor in Eq. �17� is
changed to its half and the scaling function, fop�y��0, is
periodic with period 1. Then for t�L we expect the
asymptotic behavior

SL
op�t� �

ceff

3
log t + cst, �18�

which is a generalization of Eq. �3�.
This relation is checked in Fig. 4 in which the time evo-

lution of the entropy is shown as a function of log t for
different values of 	. Indeed the starting part of the curves
are well described by straight lines the slope of which is
compatible with ceff�	� /3, as calculated from the equilibrium
entropy and given in Fig. 2.

We have repeated the calculation by considering another
type of quench: for t�0 the system contains a pair of defects
of strength 0�	�1, which is changed to the homogeneous
coupling, i.e., 	=1 for t�0. In this case the scaling form in
Eq. �17� is still applicable, however with a different effective
central charge, ceff� �	�, which is a decreasing function of 	.
We have checked that ceff�	�+ceff� �	�= c̃�	��1 /2, for ex-
ample, c̃�0.25�=0.527�3�, c̃�0.5�=0.545�5�, and c̃�0.75�
=0.520�5�.

IV. CHAIN WITH EXTENDED DEFECTS

We have calculated the entanglement entropy between
two halves of the quantum Ising chain which contains a pair
of extended defect, as described by the Hamiltonian H0
+Hext in Eqs. �4� and �9�. For different lengths of the chain,
L, the entropy is plotted in Fig. 5 as a function of the strength
of the defect, A.

For a given L the entropy has a maximum close to A=0,
which corresponds to the critical pure system, whereas for
large negative �positive� A the entropy approaches the limit-
ing value 0 �log 2�, which is the same in the fully disordered
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(b)
(c)

open (d)
0.0

1.0

2.0

0.0 64.0 128.0

S
(t

)

t

FIG. 3. �Color online� Time evolution of the entropy after a
quench from two disconnected chains. The final system is closed
and homogeneous �a� or contains one �b� or two �c� defects of
strength 	=1 /2. The quench to a homogeneous open chain is given
by �d�. The analytical formulae for the homogeneous closed Eq.
�15� and open Eq. �16� chains are also shown by full lines.

0.0

0.5

1.0

1.0 4.0 16.0 64.0

S
(t

)

t

FIG. 4. �Color online� Time evolution of the entropy after a
quench from two disconnected chains into an open chain with one
defect having different strengths 	=1.0 �homogeneous�, 	=0.75,
	=0.5, and 	=0.25, from the top to the bottom. In the log t scale
the initial part of the curves for L=128 and L=256 are close to the
indicated straight lines having the slope ceff�	� /3, which is calcu-
lated from the scaling of the equilibrium entropy �see Fig. 2�.
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�ordered� phase of the pure system. For intermediate values
of A�0 the entropy with increasing L seems to be saturated.
This follows from the observation that the effective central
charges obtained through Eq. �11� approach zero even for a
small value of �A�.

The finite-size dependence of the entropy can be ex-
plained if we take into account the critical scaling behavior
at the interface, which is valid for large enough lengths, L

� L̃. As described in Sec. II, for A�0 the defect renormal-
izes to a cut, whereas for A�0 it becomes ordered, which is
in agreement with the behavior of the entropy in Fig. 5. The

microscopic length scale, L̃, can be estimated in the A�0
regime from the value of the renormalized connecting cou-

pling: J0�L� �L=L̃� L̃−�A�, which should be on the order of
O�1�, say e−�, with ��0. From this we obtain for the mi-
croscopic length,

L̃ � exp� �

�A�� . �19�

A similar expression can be derived in the regime A�0, too.

Note that L̃ has a very fast increase with decreasing �A� and it
is divergent in the homogeneous system. The microscopic

length, L̃, sets in a length scale for the entanglement, too, and

in the limit L̃�L, but at the same time L̃�1, the entangle-

ment entropy is obtained from Eq. �2� by replacing � with L̃,
so that

S�A� �
c

3
log L̃ + cst �

c

3

�

�A�
+ cst. �20�

We have tried to fit the extrapolated numerical values of
S�A� by this formula in Fig. 5, which is found to be reason-
able with ��0.87.

We have also analyzed the finite-size scaling behavior of
the entropy close to its maximum, which is located at Am
=Am�L� and has a value Sm=Sm�L�. In order to shift the
maximum to the same position for all L we have considered
the difference, 	S�L��S�L�−Sm as a function of 	A�A
−Am. In terms of the scaling variable 	A�log2 L−3� the
curves for different L are scaled together, as illustrated in the
inset of Fig. 5. Here the scaling collapse is very good for
A�0, whereas for A�0 the somewhat less perfect collapse
is probably due to the presence of interface order in the sys-
tem. Since Am�L�→0 for large L the scaling combination
used in the inset of Fig. 5 is compatible with the microscopic
length scale defined in Eq. �19�.

Time evolution after the quench

We have measured the time evolution of the entropy, if
the system contains a pair of extended defects for t�0,
which is removed for t�0 and we are left with the homoge-
neous closed chain. As shown in Fig. 6 the entropy for t
�L has a logarithmic increase in time and the prefactor,
p�A�, which seems to have the symmetry: p�A�= p�−A� is
increasing with �A�. We have calculated two-point fits for the
prefactors, see in Eq. �12�, the extrapolated values of which
are plotted in the inset of Fig. 6. The prefactor has its mini-
mum around A=0, which is close to 2c /3=1 /3, whereas for
large �A� we have approximately: p�A��A /2. The measured
points can be well interpolated by the curve: p�A�= 	1 /9
+ �A� /6+A2 /4
1/2, which is also indicated in the inset of Fig.
6.

To explain the observed behavior of the entropy we have
to take into account two different effects of the extended
defect. First, from local scaling consideration in Sec. II the
defect renormalizes to a cut, thus, for small �A� the quench is
made from two disconnected parts to a closed chain, and
according to Eq. �15� the prefactor is 2c /3=1 /3 in agree-
ment with the measured limiting values. The second effect of
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(A-Am)(log2L-3)

FIG. 5. �Color online� The entanglement entropy of the quantum
Ising chain with two symmetrically placed extended defects as a
function of the strength of the defect, A, for different finite systems.
The conjectured asymptotic behavior in Eq. �20� is indicated by the
full red curve. Inset: Scaling plot of the entanglement entropy
around its maxima 	exp�S−Sm�
 in terms of the combination �A
−Am��log2 L−3�, see the text.
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FIG. 6. �Color online� Time evolution of the entropy after re-
moving a pair of extended defect of various strength, A, from the
critical quantum Ising chain �for t�8. from the top to the bottom
A=−8.0;−6.0;−4.0;4.0;−2.0;2.0�. In a log t plot the initial part of
the curves are described by straight lines with A-dependent slopes.
The extrapolated values of the slopes as a function of A are given in
the inset together with an interpolation curve, see the text.
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the extended defect is to produce an increase in the entropy
through inhomogeneous quench since the interaction in the
chain at position x differs from the critical value by J�x�−1.
According to the argument in Ref. 5 pairs of quasiparticles
are emitted at different points of the chain and they will
contribute to the entanglement at a later time, when reach the
two parts of the system. The density of quasiparticles, ��x�
depends on the distance from the critical point at the given
position34 and for a small perturbation it is given by18 �
��J�x�−1� /2. The increase in the entropy is obtained by in-
tegrating over the contributions,

S�t� − S�0� =
1

2
�

−t

t

dx�	J�x�
 , �21�

which for the smooth inhomogeneity in Eq. �9� and for t
�L results in: S�t�−S�0��A /2 log t, in agreement with the
numerical results.

V. DISCUSSION

In this paper we have considered the quantum Ising chain
with critical couplings which is separated into two parts by
localized or extended defects. In both cases the scaling be-
havior of the interface magnetization is nonuniversal �the
scaling exponents depend on the strength of the defect� and
we asked the question, how this fact is reflected in the en-
tanglement properties of the system. For the localized defect
both the equilibrium and the nonequilibrium entropy is found
to be characterized by the same effective central charge, the
value of which depends on the strength of the defect. In this
case scaling of the equilibrium and the nonequilibrium en-
tropy can be cast into the same form, see Eq. �17�.

The situation is found completely different for the ex-
tended defect, in which case the equilibrium entropy is satu-
rated, although the magnetization correlations �also at the
interface� are long ranged and thus the corresponding corre-
lation length is divergent. In this case the entanglement is
related to another, finite microscopic length, as given in Eq.
�19�. This is due to the fact that the two parts of the system
at the interface are asymptotically separated and the wave
function become localized. We can thus conclude that for an
extended defect the correlation length and the entanglement
length have different scaling properties. As far as the non-
equilibrium entropy of this system is concerned it is shown
to have a logarithmic t dependence, the prefactor of which is
the result of two effects: the asymptotic cut and the inhomo-
geneous quench.

Our results for the localized defect are related to similar
studies for the XX chain.21,22 Since the entropy of the quan-
tum Ising chain and that of the XX chain are exactly related35

the same is true for the central charges, too. For example,
from ceff�	� in Fig. 2 we obtain the effective central charge
in the closed XX chain with one interface defect of strength
t=	 as ceff

XX�t�=ceff�	�+1 /2, as given in Fig. 5 of Ref. 21.
Here we comment on the observation in Ref. 21 that the
small 	 dependence of the effective central charge is given
by: ceff�	��	�, with an exponent, ��1.8. According to our
perturbative calculation in Eq. �13� the true exponent is �

=2, however with a multiplicative logarithmic correction
term.36 Similar behavior is expected to hold in higher-
dimensional gapless fermionic systems with weak links.37

The result in Eq. �13� can be compared with a bosonization
study of the continuum version of the XX chain,22 in which
the impurity �defect� contribution to the entanglement en-
tropy is found to scale as

�S =
1

4
y2�2 ln

L

�
�1 − ln

L

�
� , �22�

where y is the strength of the impurity potential and � is a
small-distance cutoff. The leading ln2�L /�� term in Eq. �22�
is not compatible with our lattice result.

As far as marginal-extended defects are concerned our
results for the nonequilibrium entropy are expected to be
generic for another critical quantum spin chains, too. From
scaling theory it is known that an extended defect in the
form, �A /x��, x being the distance from the center of the
defect, is a marginal perturbation, provided �=1 /�, � being
the correlation-length exponent.19 Now estimating the non-
equilibrium entropy we repeat the argument at the end of
Sec. IV, where the density of quasiparticles is expected to
scale with the value of the local gap:38 ��x���J�x�−1��
�A /x. Integrating the contributions in time, see Eq. �21�, for
large A leads to the behavior, S�t�−S�0��A log t, as for the
quantum Ising chain.
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APPENDIX A: TIME EVOLUTION OF THE ENTROPY
FOR QUADRATIC FERMIONIC SYSTEMS

Let us consider a general Hamiltonian, H, which is qua-
dratic in terms of fermion creation, ck

†, and annihilation, ck,
operators and which is given for t�0 as

H = �
k,l=1

L �ck
†Aklcl +

1

2
�ck

†Bklcl
† + H.c.�� . �A1�

Here Akl��A�kl=Alk and Bkl��B�kl=−Blk are real numbers
and k , l are the sites of a lattice. In the initial state, i.e., for
t�0 the parameters of the Hamiltonian are different, say,
Akl

�0� and Bkl
�0� and the ground state of the initial Hamiltonian,

H�0�, is denoted by ��0�. The system is divided into two
parts: A consists of points k=1,2 , . . . ,� and B of the rest of
the system.

For one dimensional spin models, such as the quantum
Ising chain, the Pauli spin operators, 
l

x,y,z, are related to the
fermionic operators as29

�
j�l

�− 
 j�z
l
x = cl

† + cl � Al � �− 1�l−1ǎ2l−1,
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�
j�l

�− 
 j�zı
l
y = cl

† − cl � Bl � ı�− 1�l−1ǎ2l. �A2�

Here, in the last two equations, at a given site, l, we define
two Clifford operators, Al and Bl, as well as two Majorana
fermion operators, ǎ2l−1 and ǎ2l. The commutation relations
for these new set of operators are

Al
2 = 1, Bl

2 = − 1, AlBk = − BkAl,

AlAk = − AkAl, BlBk = − BkBl, l � k �A3�

for the Clifford operators and

ǎl
+ = ǎl, �ǎl, ǎk� = 2�l,k �A4�

for the Majorana fermion operators.
The first step of the calculation is to diagonalize both,

H�0� and H, which can be made by the same type of canoni-
cal transformation. For simplicity we work here with H, for
H�0� the analogous results are denoted by a superscript �0�.
The new set of fermion operators are given by the combina-
tion,

�k = �
l

�gklcl + hklcl
†� , �A5�

where gkl and hkl are real numbers and the Hamiltonian as-
sumes the diagonal form,

H = �
k=1

L

�k�k
†�k + const. �A6�

Here the energy of the free-fermionic modes, �k, are given
by the solution of the eigenvalue equations,

�A − B��A + B��k = �k
2�k,

�A + B��A − B��k = �k
2�k, �A7�

and the components of the eigenvectors are

�k�i� = gki + hki,

�k�i� = gki − hki. �A8�

In the second step we consider the subsystem A and calcu-
late its reduced density matrix, �A, which can be recon-
structed from the time-dependent reduced correlation matrix
of the Majorana operators,

��0�ǎm�t�ǎn�t���0� = �m,n + ı���
A�mn, �A9�

m ,n=1,2 , . . . ,2�. Here ���
A�mn is a skew-symmetric �or an-

tisymmetric� matrix which is transformed by an orthogonal
transformation, Q, into a block-diagonal form,

Q��
AQT = �

0 �1 0 0 . . .

− �1 0 0 0 . . .

0 0 0 �2 . . .

0 0 − �2 0 . . .

�

. . .0 �r

¯− �r 0

�

� ,

�A10�

thus the eigenvalues of ��
A are �ı�r, r=1,2 , . . . ,�. In this

representation the reduced density matrix is the direct prod-
uct of � uncorrelated modes: ��= � r=1

� �r, where �r has eigen-
values �1��r� /2. The entanglement entropy is then given by
the sum of binary entropies,

SL��� = − �
r=1

� �1 + �r

2
log

1 + �r

2
+

1 − �r

2
log

1 − �r

2
� .

�A11�

In the third step we calculate the time-dependent correlation
matrix and work in terms of the Clifford operators the time
evolution of which are given by32

Al�t� = �
k

	�AlAk�tAk + �AlBk�tBk
 ,

Bl�t� = �
k

	�BlAk�tAk + �BlBk�tBk
 . �A12�

Here the time-dependent contractions are

�AlAk�t = �
q

cos��qt��q�l��q�k� ,

�AlBk�t = �BkAl�t = ı�
q

sin��qt��q�l��q�k� ,

�BlBk�t = �
q

cos��qt��q�l��q�k� . �A13�

Note, that in Eq. �A13� the free-fermionic quantities are re-
lated to the Hamiltonian H, which governs the time evolu-
tion in the system for t�0. The matrix elements of the time-
dependent Clifford operators, such as ��0�Al�t�Ak�t���0�,
involve the following ground-state expectation values,

��0�Ak1
Ak2

��0� = �k1,k2
, ��0�Bk1

Bk2
��0� = − �k1,k2

��0�Ak1
Bk2

��0� = − Gk2k1

�0� , ��0�Bk1
Ak2

��0� = Gk1k2

�0� .

�A14�

Here the first equations follow from the commutation rules in
Eq. �A3�, whereas the static correlation matrix Gk1k2

�0� is given
by
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Gk1k2

�0� = − �
q

�q
�0��k1��q

�0��k2� , �A15�

which is calculated with the initial Hamiltonian, H�0�. Now
one can go on and calculate the time-dependent correlation
matrix of the Clifford operators, which is then transformed
by Eq. �A2� for Majorana operators so that finally one ob-
tains the matrix elements of �A in Eq. �A9� as

�2l−1,2m−1
A = − ı� �

k1,k2

Gk1k2

�0� �AlBk1
�t�AmAk2

�t

− �
k1,k2

Gk2k1

�0� �AlAk1
�t�AmBk2

�t��− 1�l+m,

�2l−1,2m
A = � �

k1,k2

Gk2k1

�0� �AlAk1
�t�BmBk2

�t

− �
k1,k2

Gk1k2

�0� �AlBk1
�t�BmAk2

�t��− 1�l+m,

�2l,2m−1
A = − � �

k1,k2

Gk2k1

�0� �AmAk1
�t�BlBk2

�t

− �
k1,k2

Gk1k2

�0� �AmBk1
�t�BlAk2

�t��− 1�l+m,

�2l,2m
A = − ı� �

k1,k2

Gk2k1

�0� �BlAk1
�t�BmBk2

�t

− �
k1,k2

Gk1k2

�0� �BlBk1
�t�BmAk2

�t��− 1�l+m. �A16�

APPENDIX B: PERTURBATIVE CALCULATION OF THE
ENTROPY FOR LOCALIZED DEFECTS

Here we consider the homogeneous quantum Ising chain
with one single defect coupling of strength, 	, between spins
at � and �+1 but the two ends of the chain at 1 and L are
free. The unperturbed system �with 	=0� consists of two
separated chains: A with sites i=1,2 , . . .� and B with sites
i=�+1,�+2, . . .L, and the length of B is denoted by ��=L
−�. The reduced density matrix of A, denoted by ��, is cal-
culated perturbatively in Ref. 35. The matrix elements in
leading order, i.e., up to O�	2� are given by

��i
A����� j

A� = ���i, j� = Z�
k

B

c�i,k�c��j,k� , �B1�

with c�0,0�=1 and

c�i,k� =
	

Ei
A + Ek

B ��i
A�
�

x��0
A���k

B�
�+1
x ��0

B� . �B2�

Here ��i
A� ���k

B�� is the ith �kth� eigenstate of the unperturbed
system A �B� with excitation energy: Ei

A �Ek
B� and Z is a

normalization constant, so that �i
A���i , i�=1. In Eq. �B2� the

matrix elements of the surface magnetization operators 
�
x of

system A and 
�+1
x of system B are nonzero, if the excited

states, ��i
A� and ��k

B� in the fermionic representation contain
just one fermion. Then using the notation of Appendix A the
nonvanishing matrix elements are given by: ��i

A�
�
x��0

A�
=�i

A���, i=1,2 , . . .� with Ei
A=�i

A and ��k
B�
�+1

x ��0
B�

=�k
B�1�, k=1,2 , . . .�� with Ek

B=�k
B. Using the exact solution

of the open quantum Ising chain with homogeneous critical
couplings of length � 	see Eqs. �A5� and �A6� of Ref. 16
 we
obtain in leading order,

���i, j� = Z	2 cos �i cos � j

�2� + 1��2�� + 1�

� �
k=1

��
cos2 �k

�sin �i + sin �k��sin � j + sin �k�
�B3�

i , j=1,2 , . . . ,�, with �i=
�
2

2i−1
2�+1 and �k= �

2
2k−1
2��+1

. In the fol-
lowing we analyze the consequences of this expression in the
limits: ��1 and �� /��1.

The leading eigenvalue of the reduced density matrix is

w1 = Z = 1 − 	2�a1 + a log �� , �B4�

where the prefactor of the logarithm is a=�−2 and a1 is a
constant of O�1�. From Eq. �B4� we obtain for the single-
copy entanglement,

S1 = 	2� 1

�2 log � + cst� �B5�

which is proportional to log �. For two symmetrically placed
defects, as studied numerically in Sec. III the prefactor is
2	2 /�2, from which we obtain the value of �eff�	� as given
in Eq. �14�.

To obtain the entanglement entropy in leading order one
should calculate the other i=2,3 , . . .�+1 eigenvalues of the
reduced density matrix, which are expressed as: wi=	2�i, so
that the entropy is given by

S�	� = − w1 log w1 − 	2�
i=2

�+1

�i�log �i + log 	2� + O�	4� .

�B6�

Here the correction term is evaluated numerically and we
have obtained �i=2

�+1�i log �i=b1+b log � and the prefactor of
the logarithm is b=0.062180�2�. Putting this and w1 from
Eq. �B4� into Eq. �B6� we obtain that the entanglement en-
tropy scales as log � for large �, and the effective central
charge �calculated for two symmetrically placed defects� is
given in Eq. �13�.
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